Template-based intervention in Boolean network models of biological systems
نویسندگان
چکیده
MOTIVATION A grand challenge in the modeling of biological systems is the identification of key variables which can act as targets for intervention. Boolean networks are among the simplest of models, yet they have been shown to adequately model many of the complex dynamics of biological systems. In our recent work, we utilized a logic minimization approach to identify quality single variable targets for intervention from the state space of a Boolean network. However, as the number of variables in a network increases, the more likely it is that a successful intervention strategy will require multiple variables. Thus, for larger networks, such an approach is required in order to identify more complex intervention strategies while working within the limited view of the network's state space. Specifically, we address three primary challenges for the large network arena: the first challenge is how to consider many subsets of variables, the second is to design clear methods and measures to identify the best targets for intervention in a systematic way, and the third is to work with an intractable state space through sampling. RESULTS We introduce a multiple variable intervention target called a template and show through simulation studies of random networks that these templates are able to identify top intervention targets in increasingly large Boolean networks. We first show that, when other methods show drastic loss in performance, template methods show no significant performance loss between fully explored and partially sampled Boolean state spaces. We also show that, when other methods show a complete inability to produce viable intervention targets in sampled Boolean state spaces, template methods maintain significantly consistent success rates even as state space sizes increase exponentially with larger networks. Finally, we show the utility of the template approach on a real-world Boolean network modeling T-LGL leukemia. CONCLUSIONS Overall, these results demonstrate how template-based approaches now effectively take over for our previous single variable approaches and produce quality intervention targets in larger networks requiring sampled state spaces.
منابع مشابه
Identifying Targets for intervention by Analyzing Basins of Attraction
MOTIVATION A grand challenge in the modeling of biological systems is the identification of key variables which can act as targets for intervention. Good intervention targets are the "key players" in a system and have significant influence over other variables; in other words, in the context of diseases such as cancer, targeting these variables with treatments and interventions will provide the...
متن کاملImproved Skips for Faster Postings List Intersection
Information retrieval can be achieved through computerized processes by generating a list of relevant responses to a query. The document processor, matching function and query analyzer are the main components of an information retrieval system. Document retrieval system is fundamentally based on: Boolean, vector-space, probabilistic, and language models. In this paper, a new methodology for mat...
متن کاملImproved Skips for Faster Postings List Intersection
Information retrieval can be achieved through computerized processes by generating a list of relevant responses to a query. The document processor, matching function and query analyzer are the main components of an information retrieval system. Document retrieval system is fundamentally based on: Boolean, vector-space, probabilistic, and language models. In this paper, a new methodology for mat...
متن کاملParameter estimation for Boolean models of biological networks
Boolean networks have long been used as models of molecular networks and play an increasingly important role in systems biology. This paper describes a software package, Polynome, offered as a web service, that helps users construct Boolean network models based on experimental data and biological input. The key feature is a discrete analog of parameter estimation for continuous models. With onl...
متن کاملFrom Boolean to Probabilistic Boolean Networks as Models of Genetic Regulatory Networks
Mathematical and computational modeling of genetic regulatory networks promises to uncover the fundamental principles governing biological systems in an integrative and holistic manner. It also paves the way toward the development of systematic approaches for effective therapeutic intervention in disease. The central theme in this paper is the Boolean formalism as a building block for modeling ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014